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ABSTRACT
Three contemporary lines were formed from the progeny of 50 French Large White sows. In the first

line, gilts were selected for ovulation rate at puberty. In the second line, they were selected for prenatal
survival of the first two parities, corrected for ovulation rate. The control constituted the third line.
Ovulation rate at puberty was analyzed using an animal model with a batch effect. Prenatal survival was
analyzed with a repeatability animal model that included batch and parity effects. Flat priors were used
to represent vague previous knowledge about parity and batch effects. Additive and residual effects were
represented assuming that they were a priori normally distributed. Variance components were assumed
to follow either uniform or inverted chi-square distributions, a priori. The use of different priors did not
affect the results substantially. Heritabilities for ovulation rate ranged from 0.32 to 0.39, and from 0.11
to 0.16 for prenatal survival, depending on the prior used. The mean of the marginal posterior distribution
of response to four generations of selection ranged from 0.38 to 0.40 ova per generation, and from 1.1
to 1.3% of the mean survival rate for average survival per generation.

LITTER size is difficult to improve by selection proposed by Sorensen et al. (1994) that takes into ac-
count the selection mechanism that generated the data(Haley et al. 1988) unless high selection pressures

are applied in large populations (Blasco et al. 1995). and the uncertainty about fixed effects and variance
components. Using this approach, the uncertaintySelection for ovulation rate and prenatal survival have

been suggested as indirect ways to improve litter size about response to selection is described via its marginal
posterior distribution, without resorting to approxima-( Johnson et al. 1984). Only one selection experiment

for ovulation rate in pigs and two in mice have been tions. This novel way of analyzing selection experiments
is applied in the present work. The emphasis here is topublished, but although an improvement in number of

ova released was obtained, no correlated response in incorporate prior information from the literature,
which is combinedwith that arising from the experimen-litter size was observed. Selection for prenatal survival

has been undertaken in pigs using an index that in- tal data. To check consistency of conclusions with other
methods of inference, results from a least-squares analy-cluded ovulation rate and prenatal survival up to 50

days, and it was successful in improving litter size. No sis and from a restricted maximum likelihood/best lin-
ear unbiased prediction (REML/BLUP) procedure areexperiments on prenatal survival have been reported in

pigs, but one experiment with mice showed promising succinctly presented.
results (see Blasco et al. 1993, 1995).

The objective of this paper is to report an analysis
MATERIALS AND METHODSof response to selection from two experiments using

French Large White pigs; one, for ovulation rate, and Animals: Three contemporary lines (two selected and one
the other for prenatal survival. The results on the corre- control) were formed from the progeny of 50 French Large

White sows from the INRA experimental herd of Saint-Gilles.lated response in litter size will be published separately.
Sows were artificially inseminated with semen from 25 boarsResponse to selection has traditionally been estimated
from French artificial insemination centers. The experimentusing either least-squares procedures or mixed model was conducted at the INRA experimental farm of Galle. From

techniques with animal models (Sorensen and Ken- each line of each generation z50 gilts and 6–8 boars from
nedy 1984). In either case, it is difficult to obtain a first litters were kept for breeding. Puberty was defined as the

first estrus, detected by standing response to a teaser boar.precise estimate of the sampling variance of the estima-
Estrus detection on a daily basis was initiated at 150 days oftor of selection response. A Bayesian approach has been
age and continued until 250 days of age. Ovulation rate at
puberty was estimated by counting the number of corpora
lutea using laparoscopy on females under general anesthesia,
between10 and 15 days after mating. Females were kept for twoCorresponding author: Agustin Blasco, Departamento de Ciencia Ani-
litters distributed in seven farrowing batches per generation.mal, Universidad Politécnica de Valencia, Box 22012, Valencia 46071,

Spain. E-mail: ablasco@dca.upv.es Four generations of selection were analyzed. In the first line
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(S-OR), gilts were selected for ovulation rate (OR) at puberty.
In the second line (S-PS), gilts were selected for prenatal
survival corrected for ovulation rate (PS), using data from the
first two parities. Prenatal survival was computed as follows
(Bidanel et al. 1996):
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where TNBij and ORij are, respectively, the total number born
and ovulation rate of female i in parity j, and ORj is the mean
of parity j. The experiment included a control line in which
both traits were measured.

Models and statistical inference: Selection was performed
for one trait in each of the two selected lines and, accordingly,
traits were analyzed univariately. In each case, the relevant
selected line and control line were analyzed jointly. The data
from OR, yor , was assumed to be generated from the following
conditional multivariate normal distribution: Figure 1.—Prior distributions for the additive variance of

ovulation rate.yor ub,a,s2
e z N(Xb 1 Za, Is2

e) ,

where b is a vector of batch effects, a is a vector of additive
genetic values, s2

e is the residual variance, X and Z are known the variance components. In this way, we can study how the
design matrices, and I is the identity matrix. Prenatal survival use of different prior distributions affect the conclusions from
(yps) was assumed to be conditionally normally distributed as the experiment. The first set is an attempt to ignore prior
follows: knowledge about the additive variance for ovulation rate. This

was approximated assuming a uniform distribution, where theyps ub,a,c,s2
e z N(Xb 1 Za 1 Wc,Is2

e),
additive variance can take any positive value up to the assumed

where the vector b contains both batch and parity effects, c value of the phenotypic variance, with equal probability. In
is a vector of permanent environmental effects, and W is a set two, the prior distribution of the additive variance is such
known design matrix. The remaining parameters have an in- that its most probable value is close to 2.5, but the opinion
terpretation equivalent to that in the model for OR. Prelimi- about this value is rather vague. Thus, the approximate prior
nary analyses indicated that maternal effects did not contrib- distribution assigns similar probabilities to different values of
ute to variation in either OR or PS, and no association between the additive variance of z2.5. The last case is state three,
OR and PS with age within parity could be detected. Thus, which illustrates a situation where a stronger opinion about
these effects were not included in the final model. the probable distribution of the additive variance is held, a

As mentioned before, the statistical analysis was carried out priori, based on the fact that the breed used in this experiment
using a Bayesian perspective. This requires a judicious choice is the same as in Bidanel et al. (1992). The stronger prior
of prior distributions for all the parameters in the model. opinion is reflected in a smaller prior standard deviation.
Invoking the infinitesimal model (i.e., Bulmer 1980), additive Priors describing states two and three are scaled inverted chi-
genetic values for both OR and PS were assumed to follow a square distributions. The scaled inverted chi-square distribu-
multivariate normal distribution tion has two parameters, v and S 2. These parameters were

varied on a trial and error basis until the desired shape wasa uA,s2
a z N(0,As2

a),
obtained. Figure 1 illustrates the three prior densities for the

where A represents the known additive genetic relationship additive variance for ovulation rate.
matrix, 0 is a vector of zeros, and s2

a is the relevant (i.e., OR The same procedure was applied for prenatal survival. Here,
or PS) additive genetic variance in the base population from prior distributions for variance components were built on the
which the data were sampled. In the case of PS, the distribution assumption that the phenotypic variance is 345 (Bidanel et
of permanent environmental effects was assumed normal and al. 1996). The published heritabilities are centered at z0.2,
of the form ranging from 0 to 0.23. Bidanel et al. (1992) gave a value of

0.03, with a standard error of 0.03 for French Large Whitec us2
c z N(0, Is2

c) , pigs. The state of opinion one was represented using uniform
priors for all variance components. In state two, similar proba-where s2

c is the component of variance associated with perma-
nent environmental effects. Improper uniform prior distribu- bilities of additive variance are assigned to values of z70, and

the state of opinion three assigns relatively high mass to valuestions were assumed to approximate vague prior knowledge
about parity and batch effects in both traits. of additive variance near zero. These are shown in Figure 2.

The random variable genetic mean for a particular selectedPrior distributions for variance components were built on
the basis of information from the literature. The approach line (S-PS or S-OR) and generation, whose marginal posterior

distribution we wish to obtain, was defined as the averagefollowed to generate a prior distribution for the additive ge-
netic variance is described below. The remaining components additive genetic value among individuals belonging to that

line and generation.of variance were assigned prior distributions in a similar man-
ner. For ovulation rate, most of the published research shows In order to draw marginal inferences about response to

selection or other genetic parameters using the Bayesianheritabilities of either z0.1 or z0.4, ranging from 0.1 to 0.6
(Blasco et al. 1993). Bidanel et al. (1992) reports an estimate approach, it is necessary to derive the relevant marginal pos-

terior distribution. This requires performing multiple inte-of heritability of 0.11 with a standard error of 0.02 in a French
Large White population. On the basis of this prior information grals that do not have analytically tractable solutions under

the present models. To circumvent this problem, one canfor ovulation rate, and assuming a phenotypic variance of 6.25
(Bidanel et al. 1996), three different sets of prior distributions obtain Monte Carlo draws from the appropriate marginal pos-

terior distribution using the Gibbs sampler. Details about thereflecting different states of knowledge were constructed for
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TABLE 1

Parameters of inverse chi-square prior distributions
of variance components

Trait Priors va S2
a vc S 2

c ve S 2
e

OR 2 6.5 2.4 — — 30 3.6
3 6.5 0.6 — — 30 5.4

PS 2 6.5 80 6.5 20 30 300
3 2.5 32 6.5 20 30 348

OR, ovulation rate at puberty; PS, prenatal survival; v, S2,
parameters of the chi-square distribution; a, additive genetic
effects; c, permanent environmental effects; e, residual effects.

Figure 2.—Prior distributions for the additive variance of mately reflects the information that was available from
prenatal survival. the literature before the experiment was conducted.

Results from the Bayesian analysis can be found in
Tables 2–5. The mean and standard deviations of the

application of this technique in the analysis of selection experi- marginal posterior densities of heritability for OR andments can be found in Sorensen et al. (1994). In the present
PS, and repeatability for PS, calculated using the threework, the Monte Carlo estimate of the marginal posterior
sets of prior distributions, are shown in Table 2. Esti-distribution of the genetic mean for a particular generation

and line can be described as follows: first, in a particular round mates of the mean of the marginal posterior distribution
of the Gibbs sampling procedure, a draw was obtained from of heritability for OR ranged from 0.32 to 0.39 and
the joint posterior distribution of the vector of additive genetic from 0.11 to 0.16 for PS, depending on the prior used.values. Second, the additive genetic values belonging to the

Estimates of the mean of the marginal posterior distribu-generation in question were averaged. This average consti-
tion of repeatabilities for PS range from 0.23 to 0.19.tuted one sample from the marginal posterior distribution of

the genetic mean. The number of rounds in which this was Table 2 also shows posterior standard deviations. These
repeated was equal to the length of the Gibbs chain, and results indicate that three prior distributions that differ
the resulting samples constitute Monte Carlo draws from the

considerably lead to similar posterior inferences aboutmarginal posterior distribution of the genetic mean for the
heritabilities and repeatabilities.line and generation in question. The justification for interpre-

Tables 3 and 4 show Monte Carlo estimates of meansting the mean of the samples of additive values, as a sample
from the marginal posterior distribution of the genetic mean, of posterior distributions of genetic means for OR and
is based on standard results of Markov chains, and more details PS, respectively. Because of to the approximate normal-
can be found in, for example, Gilks et al. (1996). ity of all the posterior densities (see Figures 3 and 4),The final results of experimentation included in this work

it is simple to obtain estimates of posterior confidencewere obtained by averaging the results obtained from two
regions from the data in the tables. In both cases, thereindependent chains, each of length 100,000. In each chain,

the first 10,000 samples were discarded and thereafter saved is a clear indication that selection has been successful
every 30 iterations, thus keeping a total of 3000 samples. This and the results are little affected by the prior distribu-
strategy was arrived at empirically after studying the results of tions. For OR, the three sets of prior distributions leadseveral different runs andsatisfying the requirements obtained

to very similar posterior inferences. The response toby applying Raftery and Lewis’s (1992) method to obtain
inferences about quantiles from marginal posterior distribu-
tions with a given level of precision.

TABLE 2Estimates of features of marginal posterior distributions
were obtained directly from the Gibbs samples. The autocorre-

Mean (m) and standard deviation (SD) of posterior densitylation between samples and the Monte Carlo error of the esti-
of heritability (h2) and repeatibility (r) for ovulation ratemates werecomputed using methods described inGeyer (1992).

at puberty (OR) and for prenatal survival (PS) in
a French Large White population, obtained

using three prior distributionsRESULTS

The raw mean and standard deviation for OR, from Prior m(h2) SD(h2) m(r) SD(r)
the control line, were 12.97 and 2.28, respectively, based

OR 1 0.39 0.07 — —
on 388 data points. The corresponding figures for PS 2 0.39 0.06 — —
were 65.56 and 18.35, based on 351 data points. 3 0.32 0.06 — —

Table 1 shows the parameters (v, S2) of the scaled
PS 1 0.12 0.06 0.23 0.05inverted chi-square prior distributions of the variance

2 0.16 0.04 0.23 0.04
components. The values chosen for these parameters 3 0.11 0.04 0.19 0.04
generated a shape for these distributions that approxi-
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TABLE 3

Monte Carlo estimates of means and standard deviations
(in parentheses) of posterior densities of genetic means

of generations one to four (G1–G4) for OR in
the selected line (S-OR), calculated using

the three sets of prior distributions

Prior G1 G2 G3 G4

S-OR 1 0.30 0.51 1.03 1.58
(0.31) (0.35) (0.39) (0.43)

2 0.31 0.51 1.05 1.55
(0.30) (0.34) (0.38) (0.42)

Figure 3.—Posterior density of the average breeding values
in the last generation of selection for ovulation rate at puberty.3 0.31 0.51 1.01 1.53

(0.31) (0.35) (0.35) (0.38)

As we mentioned before, the results presented here
are based on the average results from two independent

four generations of selection for OR has been z0.40 chains. Computation of the Monte Carlo standard er-
ova per generation, .3% of the average per generation. rors indicated that the estimates did not differ signifi-

For PS, the posterior uncertainty of response is .OR. cantly between chains. To illustrate this point, Monte
The 95% posterior confidence regions of total response Carlo standard errors of the estimates of posterior
(genetic mean at generation four) for prior sets one, means of heritability for OR and PS, repeatability for
two, and three are approximately (21.35, 7.13), (21.11, PS, and of the genetic means for OR and PS at genera-
8.09), and (21.12, 6.92), respectively. Using prior set tion four, are shown in Table 5. In all cases, the differ-
one, the empirical posterior probability that the genetic ence in estimates of posterior means between chains
mean in the last generation was .0 is 95%. This was were ,1023 for heritabilities and repeatabilities and
estimatedcomputing the proportion of the Monte Carlo ,1022 for the estimates of the genetic means.
samples from the posterior density of the genetic mean The data were also analyzed using least-squares and
in generation four that were .0. An estimate of the the “REML/BLUP” procedures. This was done to check
marginal posterior density of the genetic mean at gener- for consistency of conclusions with alternative methods
ation four using prior set one is shown in Figure 4. of inference and to contrast the Bayesian approach with
An improvement of 3–4% of prenatal survival in four the other two traditional approaches. The least-squares
generations of selection implies a 1.1–1.5% increase of approach for both OR and PS was applied to a model
the average survival rate per generation. For both traits, that included generation and batch-nested within gen-
we note that the posterior variance of the genetic means eration for OR, and parity number, generation, and
increases with each generation. This is a reflection of the batch-nested within generation for PS. The difference
correlation among additive genetic values that builds up as between the least-squares estimates of generation effects
a result of genetic drift, which is captured by the Bayesian from the selected and control lines are shown in Table
analysis. 6. The picture that emerges from OR is relatively clear:

response to selection is effective with a total response

TABLE 4

Monte Carlo estimates of means and standard deviation
(in parentheses) of posterior densities of genetic means

of generations one–four (G1–G4) for PS in
the selected line (S-PS), calculated using

the three sets of prior distributions

Prior G1 G2 G3 G4

S-PS 1 20.53 1.23 2.83 2.89
(1.44) (1.61) (1.94) (2.12)

2 20.64 1.50 3.46 3.49
(1.70) (1.87) (2.05) (2.30)

3 20.46 1.22 2.84 2.90
Figure 4.—Posterior density of the average breeding values(1.45) (1.60) (1.82) (2.01)

in the last generation of selection for prenatal survival.
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TABLE 5

Monte Carlo standard errors (SE) of the estimates of means of heritabilities (h2), repeatabilities (r),
and of the genetic means of generation four (G4) from lines S-OR and S-PS

S-OR S-PS

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

SE (h2) 0.002 0.002 0.002 0.005 0.002 0.003
SE (re) — — — 0.002 0.001 0.002
SE (G4) 0.018 0.023 0.021 0.120 0.087 0.182

of z0.45 ova per generation. This is in agreement with ties for OR and PS have been reported in a preliminary
analysis of the same data set by Bidanel et al. (1996).the results from the Bayesian analysis. Prenatal survival

is a more variable trait; the results are less clear and The heritability estimates given by Bidanel et al. (1996)
are 0.36 for OR and 0.14 for PS, which is in agreementlittle can be concluded from this least-squares analysis.

Sampling variances of the least-squares estimators can- with the results reported here. Table 6 shows the evolu-
tion of the genetic means for both OR and PS usingnot be obtained exactly, but approximations that ac-

count for genetic drift are available (i.e., Hill 1980; “REML/BLUP” with the above estimates. The results
for OR are in agreement with those obtained usingSorensen and Kennedy 1983). These were not com-

puted in the present work. This erratic picture of selec- the Bayesian approach. The results for PS resemble the
results obtained under the prior set two, but there istion response is often characteristic of the least-squares

analysis. no theoretical reason for this similarity here. It is only
in very large samples that there should be agreementThe “REML/BLUP” approach is a two-step proce-

dure, whereby genetic variances are estimated in the between inferences based on “REML/BLUP” and the
Bayesian approach.first step using restricted maximum likelihood, and are

used in lieu of the true parameters to solve the mixed
model equations in the second step (Sorensen and

DISCUSSION
Kennedy 1986). Because of the “shrinkage” associated
with this method, inferences about response to selection We have presented a Bayesian analysis of response to
are often clearer than those obtained using least- selection for ovulation rate at puberty and for prenatal
squares. Further, in contrast to the least-squares proce- survival in French Large White pigs. It is a characteristic
dure, the method can disentangle genetic and nonge- of the Bayesian approach to inference that the final
netic trends in complicated data structures with overlap- conclusion (which is based on the posterior distribu-
ping generations. Two shortcomings of the procedure, tion) is the result of combining two sources of informa-
however, are the following: first, that estimated vari- tion. One of these sources arises from the prior distribu-
ances are regarded as known parameters and no ac- tion, before the data were collected, and the other arises
count is taken of the error of estimation. Second, the from the experimental data itself. The analysis per-
exact sampling distribution of the prediction of re- formed here made use of very different prior distribu-
sponse to selection obtained with this procedure is not tions for the variance components. However, despite
known. This makes it difficult to describe the error of these different contributions from prior information,
estimation of response. posterior inferences did not differ substantially. This is

Residual maximum likelihood estimates of heritabili- a reassuring conclusion, and it indicates that the experi-
ment has enough informational content to override the
influence of prior information to a large extent. In

TABLE 6
contrast with the other two methods of inference used

Estimates of genetic means using least squares (expressed in this study, the Bayesian approach to study response
as deviations between selected line and control line) for to selection takes into account the fact that other param-

ovulation rate at puberty OR (LS) and for prenatal survival eters (nongenetic effects and genetic variances) are be-
PS (LS), and using “REML/BLUP”-OR (R/B), PS (R/B) ing estimated from the same data. It also provides a

Monte Carlo estimate of the marginal posterior distribu-
G1 G2 G3 G4

tion, which encapsulates all the information required
OR (R/B) 0.27 0.45 1.00 1.54 for inferences about selection response. This posterior
OR (LS) 20.09 0.35 1.98 1.87 density is obtained without invoking analytic approxima-
PS (R/B) 20.54 1.49 3.26 3.42 tions or asymptotic results.
PS (LS) 25.71 2.11 4.13 22.82 The reported estimates of heritability found in the

Generations one to four: G1–G4. literature for PS have been zero or very close to zero.
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